

Enantioselective Syntheses of Morpholines and Their Homologues via S_N 2-Type Ring Opening of Aziridines and Azetidines with Haloalcohols

Manas K. Ghorai,* Dipti Shukla, and Kalpataru Das Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India

> mkghorai@iitk.ac.in Received June 17, 2009

m = 0, 1; n = 1, 2 yield upto 92%, *ee* upto 99% $R^1 = H, Ph, i-Pr, i-Bu; R^2 = H, Me, Et, i-Pr, vinyl, allyl; R^3 = H, Ph$

A highly regio- and stereoselective strategy for the syntheses in high yield and enantioselectivity of a variety of substituted nonracemic morpholines and their homologues is described. The reaction proceeds via an S_N 2-type ring opening of activated aziridines and azetidines by suitable halogenated alcohols in the presence of Lewis acid followed by base-mediated intramolecular ring closure of the resulting haloalkoxy amine.

Introduction

Morpholines are an important class of heterocyclic compounds found in many naturally occurring or synthetically important organic molecules that exhibit interesting biological and pharmacological properties.¹ Particularly, *N*- and/or 2-substituted morpholines are drug candidates with a wide spectrum of biological activities (Figure 1). Morpholine such as reboxetine is an antidepressant drug,² and *cis*-2,3-disubstituted morpholine such as aprepitant (hNK1 antagonist) is used for chemotherapy-induced nausea and vomiting (CINV) and commercially available under the name of Emend.³

Furthermore, 2,6-disubstituted morpholines are used as antitumor agents,^{4a} mild diuretics, and anorectics.^{4b} The core structure of 1,4-oxazepanes is found in important

(0) Grinstenier, 1. J., Kisili, 1. Tetrunearon Lett. 1994, 4J, 655/-6540

DOI: 10.1021/jo901297d © 2009 American Chemical Society Published on Web 08/12/2009

natural products, such as neurotoxin batrachotoxin (BTX)⁵ (Figure 1), and there are only a few reports for their synthesis.^{6,16b} The synthesis and biological activities of 1,5-oxazocanes are also not well explored.⁷ Apart from pharmacological utility, morpholines are also used frequently as simple bases, *N*-alkylating agents, catalysts, and chiral auxiliaries in various organic transformations.^{8–10} Several efforts have been devoted toward the synthesis of morpholines from amino acids,¹¹ amino alcohols,¹² epoxides,¹³ olefins,¹⁴ carbohydrates,¹⁵ vinyl sulfonium salts,¹⁶ various other metal-catalyzed cyclizations,¹⁷ and aziridines¹⁸ or aziridinium ion intermediate.¹⁹ However, a general synthetic approach to 2-substituted morpholines, 2,3-disubstituted morpholines,

^{*}To whom correspondence should be addressed. Tel: +91-512-2597518; Fax: +91-512-2597436.

⁽¹⁾ Wijtmans, R.; Vink, M. K. S.; Schoemaker, H. E.; van Delft, F. L.; Blaauw, R. H.; Rutjes, F. P. J. T. *Synthesis* **2004**, 641-662 and references therein.

^{(2) (}a) Hajos, M.; Fleishaker, J. C.; Filipiak-Reisner, J. K.; Brown, M. T.; Wong, E. H. F. *CNS Drug Rev.* 2004, *10*, 23–44. (b) Versiani, M.; Cassano, G.; Perugi, G.; Benedetti, A.; Mastalli, L.; Nardi, A.; Savino, M. *J. Clin. Psychiatry* 2002, *63*, 31. (c) Wong, E. H. F.; Sonders, M. S.; Amara, S. G.; Tinholt, P. M.; Piercey, M. F. P.; Hoffmann, W. P.; Hyslop, D. K.; Franklin, S.; Porsolt, R. D.; Bonsignori, A.; Carfagna, N.; McArthur, R. A. *Biol. Psychiatry* 2000, *47*, 818.

⁽³⁾ Pendergrass, K.; Hargreaves, R.; Petty, K. J.; Carides, A. D.; Evans, J. K.; Horgan, K. J. *Drugs Today* **2004**, *40*, 853.

^{(4) (}a) Hikichi, M.; Yokokura, T.; Furuta, T.; Yaegashi, T. JP 62135472; Chem. Abstr. **1987**, 107, 198358 (b) GB 831933; Chem. Abstr. **196**1, 55, 2697.

 ^{(5) (}a) Grinsteiner, T. J.; Kishi, Y. Tetrahedron Lett. 1994, 45, 8333–8336.
 (b) Grinsteiner, T. J.; Kishi, Y. Tetrahedron Lett. 1994, 45, 8337–8340.

⁽⁶⁾ Clark, S. M.; Osborn, H. M. I. Tetrahedron: Asymmetry 2004, 15, 3643–3652.

⁽⁷⁾ Glinka, R.; Kotelko, B. Acta Pol. Pharm. 1976, 33, 39-48.

⁽⁸⁾ As catalyst (a) Mayer, S.; List, B. Angew. Chem., Int. Ed. 2006, 45, 4193–4195. (b) Quin, Y.-C.; Pu, L. Angew. Chem., Int. Ed. 2006, 45, 273–277.
(c) Nelson, S. G.; Wang, K. J. Am. Chem. Soc. 2006, 128, 4232–4233.
(d) Mossé, S.; Laars, M.; Kriis, K.; Kanger, T.; Alexakis, A. Org. Lett. 2006, 8, 2559–2562. (e) Betancort, J. M.; Barbas, C. F. III Org. Lett. 2001, 3, 3737–3740.

⁽⁹⁾ As auxiliary: (a) Ammazzalorso, A.; Amoroso, R.; Bettoni, G.; De Filippis, B.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Tricca, M. L. *Eur. J. Org. Chem.* **2006**, *71*, 4088–4091. (b) Jung, M. E.; Vaccaro, W. D.; Buszek, K. R. *Tetrahedron Lett.* **1989**, *30*, 1893–1896.

⁽¹⁰⁾ C₂-symmetric chiral auxiliaries: (a) Enders, D.; Meyer, O.; Raabe, G.; Runsink, J. *Synthesis* **1994**, 66–72. (b) Takahata, H.; Takahashi, S.; Kouno, S.-I.; Momose, T. *J. Org. Chem.* **1998**, *63*, 2224–2227.

^{(11) (}a) Dave, R.; Sasaki, N. A. Org. Lett. **2004**, *6*, 15–18. (b) Dave, R.; Sasaki, N. A. Tetrahedron: Asymmetry **2006**, *17*, 388–401. (c) Sladojevich, F.; Trabocchi, A.; Guarna, A. J. Org. Chem. **2007**, *72*, 4254–4257. (d) Bettoni, G.; Frachini, C.; Perrone, P.; Tortorella, V. Tetrahedron **1978**, *36*, 409–415.

FIGURE 1. Pharmaceutically active compounds possessing a 2-substituted morpholine unit.

homomorpholines, and higher homologues is scarce in the literature.

We anticipated that 2-substituted nonracemic morpholines and homologues could easily be made from the ring opening of aziridines and azetidines by haloalcohols followed by cyclization.

Recently we have reported the Lewis acid (LA) mediated ring opening of enantiopure 2-aryl-*N*-tosylaziridines and azetidines by a number of nucleophiles such as alcohols, halides, nitriles, and carbonyls to provide nonracemic products in high enantiomeric excess.²⁰ We have demonstrated that the Lewis acid mediated nucleophilic ring opening of 2-aryl-*N*-tosylaziridines or azetidines does proceed through

(14) (a) Siddiqui, S. A.; Narkhede, U. C.; Lahoti, R. J.; Srinivasan, K. V. Synlett **2006**, *11*, 1771–1773. (b) Nishi, T.; Ishibashi, K.; Nakajima, K.; Iio, Y.; Fukuzawa, T. *Tetrahedron: Asymmetry* **1998**, *9*, 3251–3262. (c) Takemoto, T.; Iio, Y.; Nishi, T. *Tetrahedron Lett.* **2000**, *41*, 1785–1788. (d) D'Arrigo, P.; Lattanzio, M.; Pedrocchi, G.; Servi, S. *Tetrahedron: Asymmetry* **1998**, *9*, 4021–4026. (e) Wilkinson, M. C. *Tetrahedron Lett.* **2005**, *46*, 4773–4775.

 (15) (a) Grotenberg, G. M.; Christina, A. E.; Buizert, A. E. M.; van der Marel, G. A.; Overkleeft, H. S.; Overhand, M. J. Org. Chem. 2004, 69, 8331– 8339. (b) Du, M.; Hindsgaul, O. Synlett 1997, 395.

(16) (a) Yar, M.; McGarrigle, E. M.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2008, 47, 3784–3786. (b) Yar, M.; McGarrigle, E. M.; Aggarwal, V. K. Org. Lett. 2009, 11, 257–260.

(17) (a) Pedrosa, R.; Andres, C.; Mendiguchia, P.; Nieto, J. J. Org. Chem. 2006, 71, 8854–8863. (b) Yamazaki, A.; Achiwa, K. Tetrahedron: Asymmetry 1995, 5, 1021–1024.

(18) (a) Kogami, Y.; Okawa, K. Bull. Chem. Soc. Jpn. 1987, 60, 2963–2965. (b) Wang, L.; Liu, Q.-B.; Wang, D.-S.; Li, X.; Han, X.-W.; Xiao, W.-J.; Zhou, Y.-G. Org. Lett. 2009, 11, 1119–1122.

(19) D'hooghe, M.; Vanlangendonck, T.; Törnroos, K. W.; De Kimpe, N. J. Org. Chem. 2006, 71, 4678–4681. Ghorai et al.

SCHEME 1. Lewis Acid Mediated Ring Opening of (R)-2-Phenyl-N-tosylaziridines with Haloalcohols Followed by Cyclization to Morpholine

an S_N 2-type pathway instead of stable 1,3- or 1,4-dipolar intermediates as invoked earlier.²¹

In continuation of our research activities in this area for designing enantioselective ring opening reactions of chiral aziridines and azetidines toward enantiopure targets, we have developed a simple strategy for the synthesis of nonracemic 2-substituted morpholines, 2,3-disubstituted morpholines, enantiopure 2,6-disubstituted morpholines, homomorpholines, and higher homologues via the ring opening of aziridines and azetidines with haloalcohols followed by intramolecular ring closure in the presence of a base. Herein, we report our results in detail.

Results and Discussion

Our investigation began with the ring opening of chiral (R)-2-phenyl-N-tosylaziridine 1a (ee > 99%) with chloroethanol in the presence of stoichiometric amount of Cu-(OTf)₂ at 0 °C, and we observed the formation of nonracemic chloroethoxy amine (S)- $3a^{22}$ and its regioisomer (R)-4a as an inseparable mixture. The same reaction when performed with bromoethanol produced the corresponding bromoethoxy amine 3a' and its regioisomer 4a' as an inseparable mixture.²³ When the mixture of **3a** and **4a** was treated with KOH at room temperature in THF, nonracemic morpholine 5a was obtained in 70% yield (74% ee) along with aziridine 1a (10% yield, 33% ee) (Scheme 1). A similar result was observed from the mixture of 3a' and 4a'. Comparing the ¹H NMR and COSY spectra of the mixture of 3a and 4a with that of pure 1a, we could conclude that there was no trace of unreacted aziridine in the mixture of 3a and 4a. However, when this reaction mixture was treated with KOH, the ¹H NMR of the crude product indicates the presence of morpholine 5a along with aziridine 1a. To confirm that the reformed aziridine 1a originates from 4a, we treated 3a with KOH, and the crude reaction mixture clearly indicated the presence of only 5a in the sample.

Screening of Lewis Acid. To optimize the reaction condition to obtain better regioselectivity and yield, other Lewis acids such as $Zn(OTf)_2$, $ZnBr_2$, $BF_3 \cdot OEt_2$, and $Ti(O^iPr)_4$ were screened in chloroethanol as the solvent. However, there was not much improvement in regioselectivity of the ring opening and yield of the final product **5a** (Table 1). Interestingly, with a catalytic amount of Cu(OTf)₂ (20 mol %) and chloroethanol as the nucleophile, the reaction was found to be highly regioselective and **3a** (yield 87%, ee 78%) was produced as the only product; the other regioisomer **4a** did not form as indicated by the ¹H NMR of the crude reaction

^{(12) (}a) Breuning, M.; Winnacker, M.; Steiner, M. *Eur. J. Org. Chem.* **2007**, 72, 2100–2106. (b) Lanman, B. A.; Myers, A. G. *Org. Lett.* **2004**, 6, 1045–1047. (c) Métro, T.-X.; Gomez Pardo, D.; Cossy, J. *J. Org. Chem.* **2008**, 73, 707–710. (d) Brenner, E.; Baldwin, R. M.; Tamagnan, G. *Org. Lett.* **2005**, 7, 937–940. (e) Cupples, C. A.; Morton, H. N. *PCT Int. Appl. WO* 9638465, **1996**.

^{(13) (}a) Albanese, D.; Salsa, M.; Landini, D.; Lupi, V.; Penso, M. Eur. J. Org. Chem. 2007, 2107–2113. (b) Abdel-Jalil, R. J.; Ali Shah, S. T.; Khan, K. M.; Voelter, W. Lett. Org. Chem. 2005, 2, 306. (c) Henegar, K. E. J. Org. Chem. 2008, 73, 3662–3665. (d) Lupi, V.; Albanese, D.; Landini, D.; Scaletti, D.; Penso, M. Tetrahedron 2004, 60, 11709–11718.

^{(20) (}a) Ghorai, M. K.; Das, K.; Shukla, D. J. Org. Chem. 2007, 72, 5859–5862. (b) Ghorai, M. K.; Kumar, A.; Das, K. Org. Lett. 2007, 9, 5441–5444.
(c) Ghorai, M. K.; Das, K.; Kumar, A. Tetrahedron Lett. 2007, 48, 4373–4377. (d) Ghorai, M. K.; Ghosh, K. Tetrahedron Lett. 2007, 48, 3191–3195.
(e) Ghorai, M. K.; Nag, K.; Kumar, A. Tetrahedron Lett. 2009, 50, 1105-1109 and references cited therein.

 ^{(21) (}a) Ungureanu, I.; Klotz, P.; Mann, A. Angew. Chem., Int. Ed. 2000, 39, 4615–4617.
 (b) Ungureanu, I.; Klotz, P.; Schoenfelder, A.; Mann, A. Chem. Commun. 2001, 958–959.

⁽²²⁾ Absolute configuration of a similar compound was determined in our previous report; please see ref 20a.

⁽²³⁾ See Supporting Information for details.

TABLE 1. Screening of Lewis Acids for Regioselective Nucleophilic Ring Opening of (R)-2-Phenyl-N-tosylaziridine with Chloroethanol⁴

	8	0	. 0			
entry	Lewis Acid (LA)	time (min)	ratio $3:4^b$	yield $(\%)^c$ of $3a + 4a$	yield $(\%)^e$ of 5a	$ee (\%)^{f} of 5a$
1	1.0 equiv Cu(OTf) ₂	2	89:11	85	70	74
2	1.0 equiv $Zn(OTf)_2$	15	72:28	72	66	74
3	1.0 equiv ZnBr ₂	10	76:24	45	60	74
4	1.0 equiv $BF_3 \cdot OEt_2$	1	81:19	68	72	74
5	1.0 equiv $Ti(O^{i}Pr)_{4}$	10	77:23	55	73	74
6	$0.2 \text{ equiv Cu(OTf)}_2$	5	100:0	87^d	80	78
7	$0.2 \text{ equiv Cu(OTf)}_2$	3	100:0	76^d	80	35 ^g

^{*a*}Reaction condition: 1.0 equiv of LA was used, and unless noted otherwise all reactions were performed with (*R*)-1a in choloroethanol as the solvent at 0 °C. ^{*b*}Ratio was determined by ¹H NMR analysis of the crude reaction mixture. ^cYield of isolated 3a + 4a after passing through plug of silica gel. ^dYield of isolated 3a after column chromatographic purification. ^{*f*}Yield of isolated 5a after column chromatographic purification. ^{*f*}Yield of isolated 5a after column chromatographic purification. ^{*f*}Determined by chiral HPLC. ^{*g*}Reaction was performed in CH₂Cl₂ with 5.0 equiv of chloroethanol.

TABLE 2. Two-Step Synthesis of Nonracemic 2-Phenyl-N-sulfonylmorpholines from (R)-2-Phenyl-N-sulfonylaziridines^a

		Ph	$\begin{array}{c} D^{O_2AF} & O^{O_1} \\ D & O^{O_2} \\ D$	2Ar THF, R			
entry	substrates 1	Ar	yield (%) ^b of chloroethoxy amine 3	time (min)	yield $(\%)^b$ of morpholines 5	time	ee (%) ^c of 5 a
1 2 3 4	1a 1b 1c 1d	$\begin{array}{c} \text{4-MeC}_6\text{H}_4\\ \text{4-NO}_2\text{C}_6\text{H}_4\\ \text{4-MeOC}_6\text{H}_4\\ \text{4-FC}_6\text{H}_4 \end{array}$	3a (87) 3b (81) 3c (85) 3d (82)	5 5 10 15	5a (80) 5b (85) 5c (90) 5d (86)	0.5 h 3 h 1 h 20 min	78 68 75 74
5	le	$4^{t}BuC_{6}H_{4}$	3e (88)	10	5e (72)	15 min	80

 a 0.2 equiv of Cu(OTf)₂ was used, and all reactions were performed with (*R*)-1a-e in choloroethanol as the solvent. b Yields of isolated 3 and 5 after column chromatographic purification are given in parentheses. c Determined by chiral HPLC using chiralcel OD-H or AS-H column.

5

1e

4-^tBuC₆H₄

mixture. Next **3a** was treated with KOH at room temperature to produce morpholine **5a** in 80% yield. On the other hand, when the reaction was performed in CH_2Cl_2 as the solvent with 5.0 equiv of chloroethanol, it was completed in shorter time but the enantioselectivity of **5a** was found to be poor (ee 35%). Reaction was found to be highly efficient with choloroethanol as the solvent, and with other solvents such as DMF and THF the reaction was not successful.

To study the electronic effect of an *N*-arylsulfonyl group, a variety of *N*-arylsulfonyl aziridines **1a**-**e** were prepared from (*R*)-phenylglycinol.²³ With the optimized reaction condition, when (*R*)-2-phenyl-*N*-sulfonylaziridines **1a**-**e** with different arylsulfonyl groups on nitrogen were treated with chloroethanol in the presence of catalytic amount of Cu(OTf)₂, the corresponding chloroethoxy amines **3a**-**e** were produced in excellent yields (up to 88%) and were cyclized to the corresponding morpholines **5a**-**e** in good yield and ee (up to 80%) (Table 2). The reaction was found to be independent of the electronic effect of *N*-arylsulfonyl groups as the reaction time and yields of the products were almost same in all the cases (ring opening step). However, the ee was found to be lower with electron-withdrawing groups (Table 2, entries 2 and 4).

Encouraged by the aforementioned results, when we attempted the one-pot synthesis of **5a** via ring opening of **1a** with chloroethanol in the presence of 20 mol % Cu(OTf)₂ followed by KOH-assisted intramolecular cyclization, gratifyingly the reaction proceeded smoothly to furnish **5a** in 90% yield with 78% ee. Under identical reaction condition morpholines **5b**-e were obtained in excellent yields from the corresponding aziridines **1b**-e (Table 3).

To extend the scope of this methodology further, a variety of 2-alkyl-substituted aziridines **1f**-**h** prepared from

TABLE 3. $Cu(OTf)_2$ -Catalyzed One-Pot Synthesis of 2-Phenyl-*N*-sulfonylmorpholines from (*R*)-2-Phenyl-*N*-sulfonylaziridines^{*a*}

Ph 1a -	BO₂Ar N Cu N HO´ e	(OTf) ₂	O NHS 3a-e	I SO ₂ Ar <u>KO</u> TH	H O F Ph ^w 5a-	NSO ₂ Ar
entry	aziridine	Ar	product	time (min)	yield $(\%)^b$	ee (%) ^c
1	1a	4-MeC ₆ H ₄	5a	35	90	78
2	1b	$4 - NO_2C_6H_4$	5b	185	92	68
3	1c	4-MeOC ₆ H ₄	5c	70	83	75
4	1d	4-FC-H	5d	35	91	74

^{*a*}0.2 equiv of Cu(OTf)₂ was used, and unless noted otherwise all reactions were performed with (*R*)-1a-e in choloroethanol as the solvent. ^{*b*}Yield of isolated **5** after column chromatographic purification. ^{*c*}Determined by chiral HPLC.

5e

25

85

80

corresponding amino acids²⁴ were reacted under the same reaction conditions.

Ring opening of alkyl aziridines 1f-h (ee > 99%) with chloroethanol was found to be slow, and the regioisomers 3f-h and 4f-h arising from internal attack and terminal attack, respectively, were obtained as an inseparable mixture (Scheme 2).

However, after cyclization and chromatographic separation 2-alkyl morpholines 5f-h and 3-alkyl morpholines 6f-h were obtained in pure forms with good yield (up to 72% overall yield)

⁽²⁴⁾ Aziridines **1f**-**h** were prepared from the corresponding amino acids L-Phe Ala, L-Val, L-Leu. These amino acids were reduced to corresponding 2aminoethanols with NaBH₄/I₂ in THF, which were then transformed into *N*tosyl derivatives with TsCl/Et₃N in CH₂Cl₂. The *N*-tosyl derivatives were then cyclized to corresponding aziridines with TsCl/ KOH in THF to afford the corresponding aziridine in excellent yield.

SCHEME 2. Cu(OTf)₂-Catalyzed One-Pot Synthesis of 2- and 3-Alkyl-*N*-tosylmorpholines via the Ring Opening of Aziridines with Chloroethanol

R = 1f: (S) Bn, 1g: (R) i Pr, 1h: (R) i Bu, ee upto 99%

TABLE 4. Cu(OTf)₂-Catalyzed One-Pot Synthesis of 2- and 3-Alkyl-*N*-tosylmorpholines via Ring Opening of Aziridines with Chloroethanol^a

enuy	azinume	morphonne 5	morphonne o	time (ii)	ee	ee (70)	
	1	yield (%) ^b	yield (%) ^b		5	6	
1	Ts N Bn ^{∿™} 1f	Bn O Sf Ts (26)	Bn ^{v,''} 6f Ts (51)	54 [°]	98	99	
2	i-Pr 1g	i-Pr//, 5g N (29)	i-Pr 6g Ts (57)	11	96	98	
3	i-Bu 1h	i-Bu,, O 5h N (68)	i-Bu Ns 6h Ts (23)	27	94	97	

^{*a*}0.2 equiv of Cu(OTf)₂ was used, and unless noted otherwise all reactions were performed with **1f**-**h** in choloroethanol as the solvent. ^{*b*}Yield of isolated products after column chromatographic purification are given in parentheses. ^{*c*}1.0 equiv of Cu(OTf)₂ was used. ^{*d*}Determined by HPLC using Chiralcel AD-H or OD-H or AS-H.

and excellent ee (up to 99%). Enhanced yield of the products were obtained when the reaction was performed under one-pot conditions, and the results are summarized in Table 4.

After establishing the synthesis of 2-substituted morpholines, we envisioned that enantiopure 2,3-disubstituted morpholines could be made easily from enantiopure 2,3disubstituted aziridines. The 2,3-disubstituted aziridines $\mathbf{li}-\mathbf{m}$ were prepared from L-phenylglycine using the method developed in our laboratory.²⁵ Ring opening of enantiopure *trans*-disubstituted aziridines $\mathbf{li}-\mathbf{m}$ (de up to 99%) with chloroethanol followed by cyclization in the presence of KOH under one-pot conditions afforded the corresponding *cis*-2,3-disubstituted morpholines as the major diastereomers (Table 5, entries 1–5) with high yield and excellent de.

The strategy was extended further for the syntheses of homomorpholines via the Cu(OTf)₂-catalyzed ring opening of (R)-2-phenyl-N-tosylaziridine **1a** with bromopropanol (10 equiv) to afford bromopropoxy amine **7** (yield 85%), which was cyclized in the presence of KOH to produce morpholine homologue 1,4-oxazepane **8** in good yield (76%) and ee (86%). The same reaction when performed under one-pot condition furnished nonracemic **8** in 87% yield and 86% ee (Scheme 3).

After successful demonstration of the strategy for the synthesis of morpholines and homomorpholines via the ring opening of aziridines, the synthetic potential of the strategy

 TABLE 5.
 Cu(OTf)₂-Catalyzed One-Pot Synthesis of 2,3-disubstituted

 Morpholines via Ring Opening of 2,3-Disubstituted-N-tosylaziridines^a

^{*a*}In all the cases the alcohol served as the solvent. ^{*b*}Diasteromeric excess >99%, except for **1m** (92%). ^{*c*}Isolated yield of pure product (**5**) after column chromatographic purification. ^{*d*}Determined by ¹H NMR of crude reaction mixture, in all the cases ee of the product was found to be >99% as determined by chiral HPLC using Chiralcel AD-H or OD-H.

was further demonstrated by the straightforward synthesis of nonracemic seven- and eight-membered homologues of morpholine. The ring opening of enantiopure (*R*)-2-phenyl-*N*-tosylazetidine²⁶ **2a** (ee > 99%) with bromoethanol and bromopropanol in the presence of 50 mol % of Cu(OTf)₂ afforded **9a** and **10a**, respectively, which were cyclized in the presence of KOH to give morpholine homologues **11a** and **12a** with poor yields (up to 48%) and moderate ee (up to 56%). When the reaction was performed under one-pot condition, **11a** and **12a** were obtained with better yields

⁽²⁵⁾ Kumar, A. Ph.D. thesis submitted to IIT-Kanpur, India, 2009.

⁽²⁶⁾ Ghorai, M. K.; Das, K.; Kumar, A. Tetrahedron Lett. 2007, 48, 2471–2475.

SCHEME 3. $Cu(OTf)_2$ -Catalyzed One-Pot Synthesis of Homomorpholine via the Ring Opening of (*R*)-2-Phenyl-*N*-tosylaziridine

SCHEME 4. One-Pot Synthesis of Homomorpholine and Higher Homologue via Ring Opening of 2-Phenyl-*N*-tosylazetidine

SCHEME 5. One-Pot Synthesis of Enantiopure Homomorpholines and Higher Homologue via Ring Opening of 2,4-Disubstituted-*N*-tosylazetidine

TABLE 6. One-Pot Synthesis of Homomorpholines and Higher Homologues via Ring Opening of Azetidines with Haloalcohols^a

^{*a*}In all the cases the alcohol served as the solvent. ^{*b*}Yield of isolated product after column chromatographic purification. ^{*c*}Determined by HPLC using Chiralcel AD-H or OD-H column. ^{*d*}Determined by crude ¹H NMR.

(up to 62%) and the same ee (up to 56%) (Scheme 4, Table 6, entries 1 and 3).

Similarly, (2R,4S)-2-ethyl-4-phenyl-*N*-tosylazetidine²⁶ **2b** (ee > 99%) was reacted with bromoethanol and bromopropanol in the presence of 50 mol % of Cu(OTf)₂ followed by cyclization in the presence of KOH to produce homomorpholine **11b** and oxazocane **12b**, respectively, as the major products (Scheme 5, Table 6, entries 2 and 4).

Mechanistic Perspective. We do believe that the ring opening of chiral aziridines 1 and azetidines 2 with haloalcohols proceeds via an $S_N 2$ pathway, which is illustrated in Scheme 6. The Lewis acid is coordinated to aziridine 1 or azetidine 2 nitrogen, generating a highly reactive species 13, which undergoes nucleophilic attack by haloalcohols in $S_N 2$ fashion to provide nonracemic 3/7 or 9/10, respectively. These haloalkoxy amines undergo KOH-mediated intramolecular cyclization to form the corresponding morpholines.

We rationalized the reduced enantioselectivilty in all cases on the basis of partial racemization of 1 or 2 before the nucleophilic ring opening step, and this hypothesis is supported by the racemization of aziridine 1a. We studied the racemization of enantiopure 1a by performing the reaction with a catalytic amount of $Cu(OTf)_2$ (20 mol %) in CH_2Cl_2 at 0 °C without adding any nucleophile. The aliquots were taken out from the reaction mixture at different time intervals and analyzed by chiral HPLC. The reduced ee with time is shown in Figure 2. After 120 min, enantiopure (*R*)-1a was found to be almost racemized (ee 10%).²⁷

⁽²⁷⁾ See Supporting Information for details of racemization study.

FIGURE 2. Racemization of (R)-1a in the presence of Cu(OTf)₂ in CH₂Cl₂ without any nucleophile.

The observed high diasteroselectivities in the case of disubstituted aziridines 1i-m are due to controlled and slow epimerization of the benzylic carbon center during the reaction. This is obvious as the epimerization would lead to the formation of less stable *cis*-aziridines from the corresponding more stable *trans*-aziridines. Moreover, the S_N2 reaction from the *cis*-isomer (if any) would be slower and less favorable for steric reasons. This rational has been evidenced from the very slow epimerization of 1m compared to 1a during the reaction; 1m (de 92%) was treated with Cu(OTf)₂ (20 mol %) in CH₂Cl₂ solvent and after 10 min it was recovered without any loss of de (92%).²⁷

Next the strategy was extended further to the synthesis of bicyclic morpholines via the ring opening of bicyclic aziridines. Aziridines **15** and **16** were reacted with bromoethanol in presence of catalytic amount (20 mol %) of Cu(OTf)₂ to afford the corresponding bromoethoxy amines **17** and **18** in good yield (up to 76%), which were cleanly cyclized in the presence of KOH to afford **19** and **20** (yield up to 80%). Under one-pot condition **19** and **20** were obtained in excellent overall yield (up to 84%) (Scheme 7). The bicyclic morpholines have been reported to be used in 2-(cyclic amino) pyrimidone derivatives as tau protein kinase 1 (TPK1) inhibitors.²⁸

SCHEME 7. One-Pot Synthesis of Bicyclic Morpholines via Ring Opening of Bicyclic Aziridines

Finally, another application of this methodology is demonstrated by the synthesis of *cis*- and *trans*-2,6-diphenylmorpholine derivatives **25** and **26** in enantiopure form. Ring opening of racemic 2-phenyl *N*-tosylaziridine (**1a**) with (*R*)-methyl 2-hydroxy-2-phenylacetate in the presence of 20 mol % of Cu(OTf)₂ afforded corresponding products **21** and **22** in 1:1 ratio (Scheme 8).

Products 21 and 22 obtained in pure forms by column chromatographic separation were reduced to the corresponding alcohols 23 and 24 in excellent yield (up to 92%) by the treatment of lithium borohydride in THF. Alcohols 23 and 24 were then cyclized to the corresponding morpholines 25 and 26 (yield up to 81%), respectively, using *p*-toluene sulfonyl chloride and KOH in THF as the solvent (Scheme 8). Structures of 25 and 26 were unambiguously confirmed by X-ray crystallography (see Supporting Information).

Detosylation of 25 and 26 was carried out in sodium naphthalenide/tetrahydrofuran to get corresponding free morpholines 27 and 28 in good yield (scheme 9). C_2 -symmetric morpholine 28 and its derivatives could find use as ligands, chiral auxiliaries, and catalysts in asymmetric transformations.

Conclusion

In conclusion, we have developed a simple and practical protocol for the synthesis of nonracemic 2-substituted morpholines, 2,3-disubstituted morpholines, enantiopure 2,6-disubstituted morpholines, homomorpholines, and higher homologues through a Cu(OTf)₂-catalyzed S_N 2-type ring opening of *N*-activated aziridines and azetidines with haloalcohols. This method allows the use of a wide range of aziridines/azetidines and haloalcohols to construct six- to eight-membered N-O-heterocyles in excellent yield and enantioselectivity. The investigation on organocatalytic reaction of substituted morpholines and further study in this area is underway.

Experimental Section

General Procedure for Cu(OTf)₂-Catalyzed Ring Opening of 2-Phenyl-N-sulfonylaziridines with Haloalcohols. A solution of aziridines 1a-e (1.0 equiv) in haloalcohol (10 equiv) was added at 0 °C to anhydrous copper triflate (20 mol %) under an argon atmosphere. The mixture was stirred for appropriate time and then the reaction was quenched with saturated aqueous sodium bicarbonate solution. The aqueous layer was extracted with dichloromethane (3 × 5.0 mL) and dried over anhydrous sodium sulfate. The crude product was purified by flash column chromatography on silica gel (230–400 mesh) using 15% ethyl acetate in petroleum ether to provide the pure product.

(S)-N-(2-(2-Chloroethoxy)-2-phenylethyl)-4-methylbenzenesulfonamide (3a). The general method described above was

⁽²⁸⁾ Fukunaza, K.; Kohara, T.; Watanabe, K.; Usui, Y.; Uehera, F.; Yokoshima, S.; Sakai, D.; Kusaka, S.-I.; Nakayama, K. *PCT Int. Appl.* WO 2007119463, **2007**.

SCHEME 9. Cleavage of *N*-Tosyl Bond of 25 and 26

followed when **1a** (100 mg, 0.37 mmol) was reacted with chloroethanol (0.25 mL, 3.7 mmol) at 0 °C for 5 min to afford **3a** as a dense liquid (112 mg, 87% yield). $[\alpha]^{25}_{\rm D}$ +133.6 (*c* 0.060, CHCl₃) for a 78% ee sample. Enantiomeric purity was determined by chiral HPLC analysis (Chiralcel OD-H column), hexane–isopropanol, 95:5; flow rate = 1.0 mL/min; $t_{\rm R}$ 1: 21.92 min (major), $t_{\rm R}$ 2: 29.89 min (minor). R_f 0.35 (ethyl acetate–hexane, 1:4); IR $\nu_{\rm max}$ (film, cm⁻¹) 3285, 2920, 1597, 1327, 1159, 1091, 810, 664, 552; ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, 2H, J = 8.1 Hz), 7.35–7.22 (m, 7H), 5.05 (dd, 1H, NH, J = 9.7, 2.9 Hz), 4.34 (dd, 1H, J = 9.2, 3.5 Hz), 3.62–3.56 (m, 3H), 3.47–3.43 (m, 1H), 3.25 (ddd, 1H, J = 13.2, 9.8, 3.5 Hz), 3.02 (ddd, 1H, J = 13.2, 9.2, 2.9 Hz), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 138.0, 137.1, 129.7, 128.9, 127.1, 126.5, 80.9, 68.9, 49.4, 43.0, 21.5; HRMS (ESI) C₁₇H₂₀ClNO₃S, (M + H)⁺ found 354.0932, calcd 354.0930.

(*S*)-*N*-(2-(3-Bromopropoxy)-2-phenylethyl)-4-methylbenzenesulfonamide (7). The general method described above was followed when **1a** (100 mg, 0.37 mmol) was reacted with bromopropanol (0.33 mL, 3.7 mmol) at 0 °C for 15 min to afford 7 as a dense liquid (127 mg, 85% yield). R_f 0.39 (ethyl acetate-petroleum ether, 1:4); IR ν_{max} (film, cm⁻¹) 3293, 2924, 2874, 1327, 1160, 1092, 702, 664, 555; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, 2H, J = 8.0 Hz), 7.28–7.19 (m, 5H), 7.13 (d, 2H, J = 1.9Hz), 4.90 (br s, 1H, NH), 4.21 (dd, 1H, J = 9.3, 3.9 Hz), 3.78–3.71 (m, 1H), 3.46–3.40 (m, 2H), 3.38–3.33 (m, 1H), 3.29–3.27 (m, 1H), 2.93–2.91 (m, 1H), 2.36 (s, 3H), 2.00–1.97 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 138.4, 129.7, 128.7, 128.5, 127.1, 126.5, 80.6, 66.4, 49.3, 32.5, 30.3, 21.5; HRMS (ESI) C₁₈H₂₂BrNO₃S, (M + H)⁺ found 412.0584, calcd 412.0582.

(*R*)-*N*-(3-(2-Bromoethoxy)-3-phenylpropyl)-4-methylbenzenesulfonamide (9a). The general method described above was followed when 2a (100 mg, 0.35 mmol) was reacted with bromoethanol (0.24 mL, 3.5 mmol) at 0 °C for 1 h to afford 9a as a dense liquid (117 mg, 82% yield). R_f 0.25 (ethyl acetate-petroleum ether, 1:4); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, 2H, J = 8.3 Hz), 7.29–7.09 (m, 7H), 5.21 (br s, 1H, NH), 4.31 (dd, 1H, J = 8.8, 3.9 Hz), 3.61–3.56 (m, 1H), 3.43–3.34 (m, 3H), 3.17–3.13 (m, 1H), 3.03–2.98 (m, 1H), 2.37 (s, 3H), 1.84–1.74 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 143.4, 140.8, 137.1, 129.8, 128.8, 128.2, 127.3, 126.4, 81.8, 68.5, 41.1, 37.4, 31.5, 21.7; HRMS (ESI) $C_{18}H_{22}BrNO_3S$, $(M + H)^+$ found 412.0579, calcd 412.0582.

General Procedure for KOH-Mediated Ring Closure of Haloalkoxy Amines 3a-e to Corresponding Morpholines 5a-e. To a suspension of powdered KOH (2 equiv) in 1.0 mL dry THF was added a solution of haloalkoxy amine (1.0 equiv) in 5.0 mL dry THF. The mixture was stirred at room temperature for the appropriate time. After completion of the reaction, water was added, and the reaction mixture was extracted with ethyl acetate (3×5.0 mL). The combined organic layer was washed with brine and dried over anhydrous sodium sulfate, and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography on silica gel using 15% ethyl acetate and petroleum ether as the eluent.

(S)-2-Phenyl-4-tosylmorpholine (5a). The general method described above was followed when **3a** (100 mg, 0.28 mmol) was reacted with KOH (31 mg, 0.56 mmol) at rt for 30 min in dry THF to afford 5a as a white solid (93 mg, 80% yield), mp 102–104 °C. $[\alpha]^{25}_{D}$ +153.0 (c 0.049, CHCl₃) for a 78% ee sample. Enantiomeric purity was determined by chiral HPLC analysis (Chiralcel OD-H column), hexane-isopropanol, 95:5; flow rate = 1.0 mL/min; t_{R} 1: 18.15 min (major), t_{R} 2: 36.14 min (minor). R_f 0.37 (ethyl acetate—hexane, 1:4); IR ν_{max} (film, cm⁻¹) 2963, 2924, 2855, 1448, 1342, 1306, 1167, 1109, 964, 814, 745, 588; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, 2H, J = 8.3 Hz, 7.29-7.21 (m, 7H), 4.53 (dd, 1H, J = 10.5, 2.7 Hz), 4.00 Hz(dd, 1H, J = 11.7, 2.2 Hz), 3.78 (ddd, 1H, J = 14.2, 11.4, 2.4)Hz), 3.71–3.67 (m, 1H), 3.58–3.55 (m, 1H), 2.43 (ddd, 1H, J = 14.9, 11.5, 3.4), 2.36 (s, 3H), 2.20–2.14 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 138.7, 132.3, 129.8, 128.5, 128.3, 127.9, 127.8, 126.0, 77.4, 66.2, 51.9, 45.4, 21.5; HRMS (ESI) $C_{17}H_{19}NO_3S (M + H)^+$ found 318.1165, calcd 318.1165.

General Procedure for One-Pot Synthesis of Morpholines and Homologues. A solution of the aziridine (1.0 equiv) in chloroethanol (10 equiv) was added to anhydrous copper triflate (20 mol %) at 0 °C under an argon atmosphere and stirred for the appropriate time. After completion of the reaction (as monitored by TLC) the reaction mixture was diluted with THF (2.0 mL), and excess KOH (12 equiv) was added to it. The reaction mixture was stirred further at rt for the appropriate time and then quenched with saturated aqueous sodium bicarbonate solution. The aqueous layer was extracted with ethyl acetate (3×5.0 mL), washed with brine, and dried over anhydrous sodium sulfate. After removal of the solvent under reduced pressure, the crude product was purified by flash column chromatography on silica gel (230–400 mesh) using ethyl acetate in hexane as eluent to afford pure product.

(S)-4-(4-tert-Butylphenylsulfonyl)-2-phenylmorpholine (5e). The general procedure for one-pot synthesis of morpholine was followed when 1e (100 mg, 0.32 mmol) was reacted with chloroethanol (0.21 mL, 3.2 mmol) at 0 °C for 10 min followed

by cyclization with excess KOH (215 mg, 3.83 mmol) in dry THF at rt for 15 min to afford pure 5e as a white solid (102.5 mg, 90%) yield); mp 112–115 °C; $[\alpha]^{25}$ D +47.2 (*c* 0.072, CHCl₃) for a 80% ee sample. Enantiomeric purity was determined by chiral HPLC analysis (Chiralcel OD-H column), hexane-isopropanol, 95:5, flow rate = 1.0 mL/min; $t_R 1$: 13.72 min (major), $t_R 2$: 22.37 min (minor). R_f 0.38 (ethyl acetate-hexane, 3:7); IR ν_{max} (KBr, cm⁻¹) 2923, 1343, 1170, 1101, 966, 772, 562; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, 2H, J = 8.5 Hz), 7.45 (d, 2H, J = 8.5Hz), 7.28 - 7.23(m, 5H), 4.54 (dd, 1H, J = 10.2, 2.2 Hz), 4.01(dd, 1H, J = 10.7, 2.2 Hz, 3.80 (ddd, 1H, J = 11.7, 11.5, 2.7 Hz), 3.73-3.70 (m, 1H), 3.59-3.56 (m, 1H), 2.47 (ddd, 1H, J = 11.7, 11.5, 3.4 Hz), 2.23–2.18 (m, 1H), 1.27 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 156.8, 138.7, 128.5, 128.3, 127.7, 126.1, 125.9, 77.3, 66.2, 51.9, 45.4, 31.0; HRMS (ESI) C₂₀H₂₅NO₃S, (M + H)⁺ found 360.1631, calcd 360.1633.

(S)-2-Isopropyl-4-tosylmorpholine (5g). The general procedure for one-pot synthesis of morpholine was followed when 1g (100 mg, 0.42 mmol) was reacted with chloroethanol (0.28 mL, 4.2 mmol) at rt for 9 h followed by cyclization with excess KOH (282 mg, 5.04 mmol) in dry THF at rt for 2 h to afford pure isomers 5g and 6g (1:2 ratio) as a white solid. Regioisomer 5g: yield 29%, mp 93–95 °C; $[\alpha]^{25}_{D}$ +44.9 (*c* 0.069, CHCl₃) for a 96% ee sample. Enantiomeric purity was determined by chiral HPLC analysis (Chiralcel AS-H column), hexane-isopropanol, 98:2, flow rate = 0.80 mL/min; $t_{\rm R}$ 1: 30.79 min (major), $t_{\rm R}$ 2: 34.44 min (minor). R_f 0.46 (ethyl acetate-hexane, 1:5); NMR (400 MHz, $CDCl_3$) δ 7.57 (d, 2H, J = 8.0 Hz), 7.28 (d, 2H, J = 8.3 Hz, 3.83 (dd, 1H, J = 11.5, 3.2 Hz), <math>3.60-3.52 (m, T)2H), 3.45-3.42 (m, 1H), 3.16-3.11 (m, 1H), 2.38 (s, 3H), 2.29 (ddd, 1H, J = 11.5, 11.2, 3.2 Hz), 2.03-1.98 (m, 1H), 1.58-1.53 (m, 1H), 0.85 (d, 3H, J = 6.8 Hz), 0.82 (d, 3H, J = 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 132.5, 129.7, 127.8, 80.3, 66.0, 48.3, 45.6, 45.5, 31.1, 21.5, 18.3; HRMS (ESI) C₁₄H₂₁NO₃S, $(M + H)^+$ found 284.1327, calcd 284.1320.

(*S*)-3-Isopropyl-4-tosylmorpholine (6g). White solid, yield 57%; mp 99–101 °C; $[\alpha]^{25}_{D}$ +39.4 (*c* 0.011, CHCl₃) for a 98% ee sample. Enantiomeric purity was determined by chiral HPLC analysis (Chiralcel AS-H column), hexane–isopropanol, 98:2, flow rate = 0.80 mL/min; *t*_R 1: 21.62 min (minor), *t*_R 2: 26.08 min (major). *R*_f 0.38 (ethyl acetate–hexane, 1:5); IR *v*_{max} (KBr, cm⁻¹) 2962, 2859, 1459, 1342, 1157, 926, 745, 677, 555; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, 2H, *J* = 8.3 Hz), 7.23 (d, 2H, *J* = 8.1 Hz), 3.75 (d, 1H, *J*=11.9 Hz), 3.56–3.51 (m, 2H), 3.27–3.05 (m, 4H), 2.36 (s, 3H), 2.26–2.18 (m, 1H), 0.90 (d, 3H, *J* = 6.6 Hz), 0.85 (d, 3H, *J* = 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 138.9, 129.8, 127.0, 66.2, 65.5, 59.7, 41.3, 25.4, 21.5, 19.9, 19.8; HRMS (ESI) C₁₄H₂₁NO₃S, (M + H)⁺ found 284.1328, calcd 284.1320.

(2R,3S)-3-Ethyl-2-phenyl-4-tosylmorpholine (5i). The general procedure for one-pot synthesis of morpholine was followed when 1i (100 mg, 0.33 mmol) was reacted with chloroethanol (0.22 mL, 3.3 mmol) at 0 °C for 10 min followed by cyclization with excess KOH (222 mg, 3.96 mmol) in dry THF at rt for 1 h to afford 5i as a dense liquid (89 mg, 78% yield); de 99%; Enantiomeric purity was determined by chiral HPLC analysis (Chiralcel AS-H column), hexane-isopropanol, 98:2, flow rate $= 0.80 \text{ mL/min}; t_{R} 1: 37.66 \text{ min} (major), t_{R} 2: 45.79 \text{ min} (minor).$ R_f 0.40 (ethyl acetate—hexane, 1:5); IR ν_{max} (neat, cm⁻¹) 2965, 2924, 2856, 1343, 1158, 1089, 995, 702, 552; ¹H NMR (400 MHz, $CDCl_3$) δ 7.74 (d, 2H, J = 8.3 Hz), 7.28–7.14 (m, 7H), 4.35 (d, 1H, J = 2.7 Hz), 3.89-3.86 (m, 1H), 3.84-3.80 (m, 1H), 3.68-3.60 (m, 1H), 3.43 (ddd, 1H, J = 12.2, 12.2, 2.9 Hz), 3.27-3.19 (m, 1H), 2.36 (s, 3H), 1.57-1.49 (m, 1H), 1.04-0.99 (m, 1H), 0.59 (t, 3H, J = 7.6 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 143.6, 138.8, 130.0, 128.4, 127.5, 127.1, 125.3, 79.3, 66.6, 59.5, 39.9, 21.6, 16.7, 10.6; HRMS (ESI) $C_{19}H_{23}NO_3S$, $(M + H)^+$ found 346.1475, calcd 346.1476.

7020 J. Org. Chem. Vol. 74, No. 18, 2009

(2R,3S)-2-Phenyl-4-tosyl-3-vinylmorpholine (5i). The general procedure for one-pot synthesis of morpholine was followed when 1j (100 mg, 0.33 mmol) was reacted with chloroethanol (0.22 mL, 3.3 mmol) at 0 °C for 15 min followed by cyclization with excess KOH (222 mg, 3.96 mmol) in dry THF at rt for 45 min to afford 5j as a dense liquid (80 mg, 70% yield); de 98%; Enantiomeric purity was determined by chiral HPLC analysis (Chiralcel AS-H column), hexane-isopropanol, 95:5, flow rate = 1.0 mL/min; t_R 1: 17.58 min (minor), t_R 2: 21.43 min (major). $R_f 0.43$ (ethyl acetate-hexane, 1:5); IR ν_{max} (neat, cm⁻ ¹) 2924, 2854, 1728, 1345, 1274, 1163, 1111, 1019, 666, 567; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.67 (d, 2H, J = 8.3 \text{ Hz}), 7.32-7.21 (m, 7H),$ 5.59-5.52 (m, 1H), 4.90 (d, 1H, J = 10.6 Hz), 4.83 (d, 1H, J = 13.8 Hz), 4.72 (d, 1H, J = 2.9 Hz), 4.57–4.52 (m, 1H), 4.08 (dd, 1H, J = 11.5, 3.7 Hz), 3.79 (ddd, 1H, J = 11.5, 11.5, 3.2 Hz),3.60 (dd, 1H, J = 12.9, 5.7 Hz), 3.22 (ddd, 1H, J = 12.3, 12.3, 3.7Hz), 2.40 (s, 3H); HRMS (ESI) $C_{19}H_{21}NO_3S$, $(M + H)^+$ found 344.1245, calcd 344.1242.

(2R,3S)-3-Methyl-2-phenyl-4-tosylmorpholine (5k). The general procedure for one-pot synthesis of morpholine was followed when 1k (100 mg, 0.35 mmol) was reacted with chloroethanol (0.24 mL, 3.5 mmol) at 0 °C for 10 min followed by cyclization with excess KOH (222 mg, 3.96 mmol) in THF at rt for 1 h to afford 5k as a dense liquid (97.8 mg, 85% yield); de > 99%; Enantiopuric purity was determined by chiral HPLC analysis (Chiralcel OD-H column), hexane-isopropanol, 95:5, flow rate = 1.0 mL/min; $t_{\rm R}$: 12.06 min. R_f 0.43 (ethyl acetate-hexane, 1:5); IR ν_{max} (neat, cm⁻¹) 2922, 2851, 1598, 1382, 1348, 1275, 1157, 1125, 1091, 1000, 920, 858, 701, 557; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, 2H, J = 8.3 Hz), 7.28–7.17 (m, 7H), 4.56 (d, 1H, J = 2.7 Hz), 4.14–4.12 (m, 1H), 3.98 (dd, 1H, J = 11.5, 3.2 Hz), 3.64 (ddd, 1H, J = 14.6, 12.2, 3.2 Hz), 3.55-3.52 (dd, 1H, J = 12.9, 3.2 Hz), 3.18 (ddd, 1H, J = 16.3, 12.4, 3.7 Hz), 2.36 (s, 1H), 0.65 (d, 3H, J = 6.8 Hz); HRMS (ESI) $C_{18}H_{21}NO_3S$, $(M + H)^+$ found 332.1326, calcd 332.1320.

(2R,3S)-3-Isopropyl-2-phenyl-4-tosylmorpholine (51). The general procedure for one-pot synthesis of morpholine was followed when 1 L (100 mg, 0.32 mmol) was reacted with chloroethanol (0.22 mL, 3.2 mmol) at 0 °C for 20 min followed by cyclization with excess KOH (222 mg, 3.96 mmol) in THF at rt for 70 min to afford 5 L as a dense liquid (81 mg, 72% yield); de 94%; Enantiomeric purity was determined by chiral HPLC analysis (Chiralcel AS-H column), hexane-isopropanol, 95:5, flow rate = 1.0 mL/min; $t_R 1$: 15.98 min (major), $t_R 2$: 18.23 min (minor). R_f 0.41 (ethyl acetate-hexane, 1:5); IR ν_{max} (neat, cm^{-1}) 2958, 2924, 2853, 1741, 1599, 1495, 1339, 1275, 1158, 1090, 936, 702, 554; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, 2H, J=8.3 Hz), 7.34-7.21 (m, 7H), 4.35 (d, 1H, J = 3.2 Hz), 3.87-3.85 (m, 1H), 3.80-8.78 (m, 1H), 3.75-3.72 (m, 1H), 3.42-3.37(m, 2H), 2.38(s, 3H), 2.02-1.97 (m, 1H), 0.84 (d, 3H, J = 6.6 Hz), 0.36 (d, 3H, J = 6.6 Hz); HRMS (ESI) C₂₀H₂₅- NO_3S , $(M + H)^+$ found 360.1636, calcd 360.1633.

(2*R*,3*S*)-3-Allyl-2-phenyl-4-tosylmorpholine (5m). The general procedure for one-pot synthesis of morpholine was followed when 1m (100 mg, 0.32 mmol) was reacted with chloroethanol (0.22 mL, 3.2 mmol) at 0 °C for 10 min followed by cyclization with excess KOH (222 mg, 3.96 mmol) in THF at rt for 45 min to afford 5m as a dense liquid (86 mg, 75% yield); de 92%; R_f 0.44 (ethyl acetate-hexane, 1:5); IR ν_{max} (neat, cm⁻¹) 2922, 2854, 1639, 1493, 1336, 1159, 1091, 1023, 918, 814, 724, 702, 682, 557; ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, 2H, J = 8.4 Hz), 7.34–7.23 (m, 7H), 5.42–5.36 (m, 1H), 4.83–4.81(m, 1H), 4.79 (s, 1H), 4.49 (d, 1H, J = 3.1 Hz), 4.16–4.13 (m, 1H), 3.93 (dd, 1H, J = 15.3, 12.2, 3.1 Hz), 3.29 (ddd, 1H, J = 14.1, 12.2, 3.5 Hz), 2.42 (s, 3H), 2.36–2.29 (m, 1H), 1.86–1.81 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 143.6, 138.5, 134.7, 129.9

128.5, 127.6, 127.3, 125.3, 116.9, 79.3, 66.8, 57.5, 40.0, 29.8, 28.8, 21.6; HRMS (ESI) $C_{20}H_{23}NO_3S$, $(M + H)^+$ found 358.1478, calcd 358.1477.

(S)-2-Phenyl-4-tosyl-1,4-oxazepane (8). The general procedure for one-pot synthesis of homomorpholine was followed when 1a (100 mg, 0.37 mmol) was reacted with bromopropanol (0.33 mL, 3.7 mmol) at 0 °C for 15 min followed by cyclization with excess KOH (249 mg, 4.44 mmol) in dry THF at rt for 16 h to afford **8** as a dense liquid (105 mg, 87% yield); $[\alpha]^{25}_{D}$ +158.3 $(c 0.084, CHCl_3)$ for a 86% ee sample. Enantiomeric purity was determined by chiral HPLC analysis (Chiralcel OD-H column), hexane-isopropanol, 95:5, flow rate = 1.0 mL/min; t_{R} 1: 12.26 min (major), t_R 2: 14.44 min (minor). R_f 0.41 (ethyl acetate-hexane, 3: 7); IR ν_{max} (neat, cm⁻¹) 2923, 2853, 1729, 1338, 1160, 1018, 700, 659, 549; ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, 2H, J = 8.3 Hz), 7.27–7.19 (m, 7H), 4.56 (dd, 1H, J = 10.0, 2.4 Hz), 4.14-4.08 (m, 1H), 3.92-3.89 (m, 1H), 3.84-3.77 (m, 2H), 2.99-2.92 (m, 1H), 2.74 (dd, 1H, J = 14.2, 10.0 Hz), 2.36 (s, 3H), 2.04–1.99 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.3, 139.7, 136.4, 129.7, 128.5, 127.9, 126.9, 126.0, 83.9, 68.6, 57.7, 46.9, 30.6, 21.4; HRMS (ESI) $C_{18}H_{21}NO_3S$, $(M + H)^+$ found 332.1323, calcd 332.1320.

(*R*)-7-Phenyl-4-tosyl-1,4-oxazepane (11a). The general procedure for one-pot synthesis of morpholine homologues was followed when 2a (100 mg, 0.35 mmol) was reacted with bromoethanol (0.24 mL, 3.5 mmol) at 0 °C for 1 h followed by cyclization with excess KOH (235.6 mg, 4.2 mmol) in dry THF at rt for 32 h to afford 11a as a white solid (72 mg, 62% yield); mp $113-114 \text{ °C}; [\alpha]^{25} \text{ }_{\text{D}} +22.5 (c \ 0.08, \text{ CHCl}_3) \text{ for a 56\% ee sample.}$ Enantiomeric purity was determined by chiral HPLC analysis (Chiralcel OD-H column), hexane-isopropanol, 95:5, flow rate = $1.0 \text{ mL/min}; t_{R}$ 1: 21.72 min (major), t_{R} 2: 25.31 min (minor). R_{f} 0.32 (ethyl acetate-hexane, 1:4); ¹H NMR (400 MHz, $CDCl_3$) δ 7.63 (d, 2H, J = 8.0 Hz), 7.27–7.16 (m, 7H), 4.60 (dd, 1H, J = 9.5, 2.7 Hz), 4.04–4.00 (m, 1H), 3.73–3.51 (m, 3H), 3.28-3.20 (m, 1H), 3.19-3.14 (m, 1H), 2.37 (s, 3H), 2.25-2.21 (m, 1H), 1.98-1.95 (m, 1H); ¹³C NMR (100 MHz CDCl₃) & 143.1, 142.6, 129.5, 128.1, 127.1, 126.8, 125.3, 81.2, 69.7, 51.4, 46.0, 37.5, 21.2; HRMS (ESI) C₁₈H₂₁NO₃S, (M + Na)⁺ found 354.1147, calcd 354.1140.

(5R,7R)-5-Ethyl-7-phenyl-4-tosyl-1,4-oxazepane (11b). The general procedure for one-pot synthesis of morpholine homologues was followed when 2b (100 mg, 0.32 mmol) was reacted with bromoethanol (0.20 mL, 3.2 mmol) at 0 °C for 20 min followed by cyclization with excess KOH (215.5 mg, 3.8 mmol) in dry THF at rt for 40 h to afford 11b as the major diastereomer as a dense liquid (68 mg, 60% yield); $[\alpha]^{25}_{D}$ +56.9 (c 0.20, CHCl₃) for a >99% ee sample. $R_f 0.38$ (ethyl acetate-hexane, 1:4); IR ν_{max} (neat, cm⁻¹) 2922, 2852, 1621, 1453, 1334, 1156, 1117, 1019, 813, 699, 547; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, 2H, J = 8.3 Hz, 7.26-7.15 (m, 7H), 4.33 (d, 1H, J = 8.8 Hz), 4.02-3.98 (m, 1H), 3.85-3.79 (m, 2H), 3.65 (dd, 1H, J = 12.9,1.7 Hz), 3.28-3.23 (m, 1H), 2.37 (s, 3H), 2.34-2.25 (m, 2H), 1.87 - 1.82 (m, 1H), 1.46 - 1.39 (m, 1H), 0.66 (t, 3H, J = 7.6 Hz); 13 C NMR (125 MHz, CDCl₃) δ 143.3, 141.8, 138.5, 134.4, 129.6, 128.6, 128.0, 127.2, 126.3, 79.3, 69.4, 54.3, 41.9, 30.6, 21.6, 10.1; HRMS (ESI) $C_{20}H_{25}NO_3S$, $(M + H)^+$ found 360.1641, calcd 360.1633.

(*R*)-2-Phenyl-5-tosyl-1,5-oxazocane (12a). The general procedure for one-pot synthesis of morpholine homologues was followed when 2a (100 mg, 0.35 mmol) was reacted with bromopropanol (0.32 mL, 3.5 mmol) at 0 °C for 30 min followed by cyclization with excess KOH (235.6 mg, 4.2 mmol) in dry THF at rt for 28 h to afford 12a as a dense liquid (72 mg, 60% yield); $[\alpha]^{25}_{D}$ +53.1 (*c* 0.16, CHCl₃) for a 50% ee sample. Enantiomeric purity was determined by chiral HPLC analysis (Chiralcel OD-H column), hexane–isopropanol, 95:5, flow rate = 1.0 mL/min; t_{R} 1: 13.17 min (major), t_{R} 2: 15.06 min

(minor). R_f 0.30 (ethyl acetate-hexane, 1:4); IR ν_{max} (neat, cm⁻¹) 2922, 2854, 1335, 1156, 1104, 713, 697, 549; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, 2H, J = 8.0 Hz), 7.27–7.18 (m, 7H), 4.66 (dd, 1H, J = 10.0, 4.2 Hz), 3.82–3.78 (m, 1H), 3.72–3.62 (m, 2H), 3.52–3.48 (m, 1H), 3.17–3.11 (m, 1H), 2.99–2.93 (m, 1H), 2.36 (s, 3H), 2.23–2.14 (m, 2H), 1.84–1.76 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.1, 129.7, 128.3, 126.9, 125.7, 66.5, 49.0. 47.6, 37.4, 30.4, 21.5; HRMS (ESI) C₁₉H₂₃NO₃S, (M + Na)⁺ found 368.1292, calcd 368.1296.

(2*R*,4*R*)-4-Ethyl-2-phenyl-5-tosyl-1,5-oxazocane (12b). The general procedure for one-pot synthesis of morpholine homologues was followed when 2b (100 mg, 0.32 mmol) reacts with bromopropanol (0.29 mL, 3.2 mmol) followed by cyclization with excess KOH (215.5 mg, 3.8 mmol) in dry THF at rt for 30 h to afford 12b as the major diastereomer as a dense liquid (85 mg, 74% yield); [α]²⁵_D +63.5 (*c* 0.23, CHCl₃) for a >99% ee sample. R_f 0.37 (ethyl acetate—hexane, 1:4); IR ν_{max} (neat, cm⁻¹) 2922, 2854, 1335, 1156, 1104, 713, 697, 549; ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, 1H, *J* = 8.0 Hz), 7.30–7.21 (m, 7H), 4.52 (dd, 1H, *J* = 9.6, 1.6 Hz), 3.98–3.90 (m, 2H), 3.80–3.77 (m, 1H), 3.54–3.50 (m, 1H), 3.19–3.09 (m, 1H), 2.39 (s, 3H), 2.22–2.15 (m, 2H), 1.85–1.73 (m, 2H), 1.34–1.30 (m, 2H), 0.57 (t, 3H, *J* = 7.7 Hz); HRMS (ESI) C₂₁H₂₇NO₃S, (M + H)⁺ found 374.1794, calcd 374.1789.

4-Tosyloctahydrocyclopenta[*b*][**1,4**]**oxazine** (**19**). The general procedure for one-pot synthesis of morpholines was followed when **15** (100 mg, 0.42 mmol) reacts with bromoethanol (0.38 mL, 4.2 mmol) at 0 °C for 7 h followed by cyclization with excess KOH (282 mg, 5.04 mmol) in dry THF at rt for 1 h to afford **19** as a white solid (99 mg, 84% yield); mp 115–116 °C; R_f 0.35 (ethyl acetate—hexane, 1:3); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, 2H, J = 8.3 Hz), 7.29 (d, 2H, J = 8.1 Hz), 3.88 (dd, 1H, J = 10.5, 2.2 Hz), 3.71 (ddd, 1H, J = 11.7, 11.7, 2.4 Hz), 3.57–3.54 (m, 1H), 3.37–3.31 (m, 1H), 2.39 (s, 3H), 2.32 (ddd, 1H, J = 11.9, 11.7, 3.6 Hz), 2.16–2.13 (m, 1H), 1.99–1.81 (m, 3H), 1.67–1.60 (m, 1H), 1.37–1.29 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 131.9, 129.7, 128.0, 82.6, 67.1, 62.0, 47.7, 26.7, 25.3, 21.5, 17.1; HRMS (ESI) C₁₄H₁₉NO₃S, (M + H)⁺ found 282.1162, calcd 282.1163.

(S)-Methyl-2-((R)-2-(4-methylphenylsulfonamido)-1-phenylethoxy)-2-phenylacetate (21). A solution of the aziridine (\pm) 1a (200 mg, 0.732 mmol) and (S)-mandelic acid ester (304 mg, 1.83 mmol) in 5.0 mL dichloromethane was added to anhydrous copper triflate (52.9 mg, 0.146 mmol) at 0 °C under an argon atmosphere. The mixture was stirred for 2 h and then the reaction was quenched with aqueous saturated sodium bicarbonate solution. The aqueous layer was extracted with dichloromethane $(3 \times 5.0 \text{ mL})$ and dried over anhydrous sodium sulfate. After removal of the solvent under reduced pressure, the crude product was purified by flash column chromatography using 15% ethyl acetate in hexane as eluent to afford pure products 21 and 22 as dense liquids in 1:1 ratio (272 mg, 85%) combined yield); diastereomer **21**; $R_f 0.28$ (ethyl acetate-hexane, 3: 7); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, 2H, J = 8.3 Hz), 7.27-7.19 (m, 10H), 7.09-7.07 (m, 2H), 5.96 (d, 1H, NH, J =7.7 Hz), 4.67 (s, 1H), 4.37 (dd, 1H, J = 9.8, 2.7 Hz), 3.71 (s, 3H), 3.19-3.17 (m, 1H), 3.08-3.03 (m, 1H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 143.2, 137.6, 137.3, 135.9, 129.6, 128.7, 128.6, 128.5, 127.3, 127.0, 126.5, 80.8, 78.5, 52.6, 49.7, 21.5.

(*S*)-Methyl-2-(*S*)-2-(4-methylphenylsulfonamido)-1-phenylethoxy)-2-phenylacetate (22). Diastereomer 22; R_f 0.24 (ethyl acetate—hexane, 3: 7); IR ν_{max} (neat, cm⁻¹) 2923, 1742, 1454, 1332, 1161, 1091, 701, 663, 554; ¹H NMR: (400 MHz, CDCl₃) δ 7.59 (d, 2H, J = 8.3 Hz), 7.39–7.38 (m, 2H), 7.33–7.12 (m, 12H), 5.09 (br s, 1H, NH), 4.64 (s, 1H), 4.23 (t, 1H, J = 6.8 Hz), 3.57 (s, 3H), 3.14 (d, 2H, J = 7.1 Hz), 2.39 (s, 3H), ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 143.2, 137.2,

135.5, 129.7, 129.2, 128.9, 128.8, 127.8, 127.1, 127.0, 78.2, 78.0, 52.2, 48.9, 21.5.

Acknowledgment. M.K.G. is grateful to IIT-Kanpur and DST, India. D.S. thanks IIT-Kanpur India for senior research fellowship.

Supporting Information Available: Spectroscopic data of other compounds, copies of ¹H and ¹³C spectra for all new compounds, X-ray crystallographic structure of **25** and **26**, and HPLC chromatograms for ee determination. This material is available free of charge via the Internet at http://pubs. acs.org.